skip to main content


Search for: All records

Creators/Authors contains: "Seidel, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In this paper, we present high-resolution spectroscopic transit observations from ESPRESSO of the super-Neptune WASP-166 b. In addition to spectroscopic ESPRESSO data, we analyse photometric data from TESS of six WASP-166 b transits along with simultaneous NGTS observations of the ESPRESSO runs. These observations were used to fit for the planetary parameters as well as assessing the level of stellar activity (e.g. spot crossings, flares) present during the ESPRESSO observations. We utilize the reloaded Rossiter McLaughlin (RRM) technique to spatially resolve the stellar surface, characterizing the centre-to-limb convection-induced variations, and to refine the star–planet obliquity. We find WASP-166 b has a projected obliquity of $\lambda = -15.52^{+2.85}_{-2.76}\, ^{\circ }$ and vsin (i) = 4.97 ± 0.09 km s−1 which is consistent with the literature. We were able to characterize centre-to-limb convective variations as a result of granulation on the surface of the star on the order of a few km s−1 for the first time. We modelled the centre-to-limb convective variations using a linear, quadratic, and cubic model with the cubic being preferred. In addition, by modelling the differential rotation and centre-to-limb convective variations simultaneously, we were able to retrieve a potential antisolar differential rotational shear (α ∼ −0.5) and stellar inclination (i* either 42.03$^{+9.13}_{-9.60}\, ^{\circ }$ or 133.64$^{+8.42}_{-7.98}\, ^{\circ }$ if the star is pointing towards or away from us). Finally, we investigate how the shape of the cross-correlation functions change as a function of limb angle and compare our results to magnetohydrodynamic simulations.

     
    more » « less
  2. null (Ed.)
    We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright ( V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 ± 0.078  M J planet in a grazing transit configuration with an impact parameter of b = 1.17 −0.08 +0.10 . As a result the radius is poorly constrained, 2.03 −0.49 +0.61 R J . The planet’s distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q s ′ = 10 7 − 10 9 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 ± 0.13  M J and a radius of 1.29 ± 0.02  R J . It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star ( V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 ±0.06  M J and a radius of 1.09 −0.05 +0.08 R J . Despite having the longest orbital period ( P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24. 
    more » « less